Replace Values In Pandas Column When N Number Of NaNs Exist In Another Column
I have the foll. pandas dataframe: 2018-05-25 0.000381 0.264318 land 2018-05-25 2018-05-26 0.000000 0.264447 land 2018-05-26 2018-05-27 0.000000 0.264791 Na
Solution 1:
Here's an approach where the consecutive appearance of null is n i.e
n = 3
# create a mask
x = df[3].isnull()
# counter to restart the count of nan once there is a no nan consecutively
se = (x.cumsum() - x.cumsum().where(~x).fillna(method='pad').fillna(0))
df.loc[se>=n,2] = np.nan
0 1 2 3 4
0 2018-05-25 0.000381 0.264318 land 2018-05-25
1 2018-05-26 0.000000 0.264447 land 2018-05-26
2 2018-05-27 0.000000 0.264791 NaN NaT
3 2018-05-28 0.000000 0.265253 NaN NaT
4 2018-05-29 0.000000 NaN NaN NaT
5 2018-05-30 0.000000 0.266066 land 2018-05-30
6 2018-05-31 0.000000 0.266150 NaN NaT
7 2018-06-01 0.000000 0.265816 NaN NaT
8 2018-06-02 0.000000 0.264892 land 2018-06-02
9 2018-06-03 0.000000 0.263191 NaN NaT
10 2018-06-04 0.000000 0.260508 land 2018-06-04
11 2018-06-05 0.000000 0.256619 NaN NaT
12 2018-06-06 0.000000 0.251286 NaN NaT
13 2018-06-07 0.000000 NaN NaN NaT
14 2018-06-08 0.000000 NaN NaN NaT
15 2018-06-09 0.000000 0.223932 land 2018-06-09
Solution 2:
Edit, more versatile approach for any threshold of consecutive NaN
's:
threshold = 3
mask = df.d.notna()
df.loc[(~mask).groupby(mask.cumsum()).transform('cumsum') >= threshold, 'c'] = np.nan
You can simply check if the row, as well as shifting the row twice are all null (I named your columns a-e
:
df.loc[df.d.isnull() & df.d.shift().isnull() & df.d.shift(2).isnull(), 'c'] = np.nan
# Result:
a b c d e
0 2018-05-25 0.000381 0.264318 land 2018-05-25
1 2018-05-26 0.000000 0.264447 land 2018-05-26
2 2018-05-27 0.000000 0.264791 NaN NaT
3 2018-05-28 0.000000 0.265253 NaN NaT
4 2018-05-29 0.000000 NaN NaN NaT
5 2018-05-30 0.000000 0.266066 land 2018-05-30
6 2018-05-31 0.000000 0.266150 NaN NaT
7 2018-06-01 0.000000 0.265816 NaN NaT
8 2018-06-02 0.000000 0.264892 land 2018-06-02
9 2018-06-03 0.000000 0.263191 NaN NaT
10 2018-06-04 0.000000 0.260508 land 2018-06-04
11 2018-06-05 0.000000 0.256619 NaN NaT
12 2018-06-06 0.000000 0.251286 NaN NaT
13 2018-06-07 0.000000 NaN NaN NaT
14 2018-06-08 0.000000 NaN NaN NaT
15 2018-06-09 0.000000 0.223932 land 2018-06-09
Post a Comment for "Replace Values In Pandas Column When N Number Of NaNs Exist In Another Column"