Concatenating Dictionaries Of Numpy Arrays Of Different Lengths (avoiding Manual Loops If Possible)
I have a question similar to the one discussed here Concatenating dictionaries of numpy arrays (avoiding manual loops if possible) I am looking for a way to concatenate the values
Solution 1:
One way is to go is use a dictionary of Series (i.e. the values are Series rather than arrays):
In [11]: d2
Out[11]: {'r': array([ 0.3536318 , 0.29363604, 0.91307454]), 's': array([46])}
In [12]: d2 = {name: pd.Series(arr) for name, arr in d2.iteritems()}
In [13]: d2
Out[13]:
{'r': 0 0.353632
1 0.293636
2 0.913075
dtype: float64,
's': 0 46
dtype: int64}
That way you can pass it into the DataFrame constructor:
In [14]: pd.DataFrame(d2)
Out[14]:
r s
0 0.353632 46
1 0.293636 NaN
2 0.913075 NaN
Post a Comment for "Concatenating Dictionaries Of Numpy Arrays Of Different Lengths (avoiding Manual Loops If Possible)"