Skip to content Skip to sidebar Skip to footer

Stacking And Shaping Slices Of DataFrame (pandas) Without Looping

I have a DataFrame of the following form: var1 var2 var3 day 0 -0.001284819 0.00138089 1.022781 1 1 -0.001310201 0.001377473 1.022626

Solution 1:

One way is to use groupby's cumcount to create a column to track if it's first or second:

In [11]: df['occurrence'] = df.groupby('day').cumcount()

In [12]: df = df.set_index(['day', 'occurrence'])

Now you can do a bit of stacking and unstacking:

In [13]: df.stack(0).unstack(0)
Out[13]: 
day                     1         2         3         4         5
occurrence                                                       
0          var1 -0.001285 -0.001331 -0.001362 -0.001394 -0.001467
           var2  0.001381  0.001375  0.001444  0.001437  0.001433
           var3  1.022781  1.022477  1.022280  1.022017  1.021749
1          var1 -0.001310 -0.001360 -0.001372 -0.001431 -0.001491
           var2  0.001377  0.001430  0.001441  0.001434  0.001432
           var3  1.022626  1.022385  1.022161  1.021908  1.021602

Solution 2:

It's not necessarily the prettiest, but in the past I've done things like

df = pd.read_csv("vd.csv", sep="\s+")
d2 = pd.melt(df, id_vars="day")
d2["sample"] = d2.groupby(["variable", "day"])["day"].rank("first")
d3 = d2.pivot_table(index=["variable", "sample"], columns="day")

which gives

>>> d3
                    value                                        
day                     1         2         3         4         5
variable sample                                                  
var1     1      -0.001285 -0.001331 -0.001362 -0.001394 -0.001467
         2      -0.001310 -0.001360 -0.001372 -0.001431 -0.001491
var2     1       0.001381  0.001375  0.001444  0.001437  0.001433
         2       0.001377  0.001430  0.001441  0.001434  0.001432
var3     1       1.022781  1.022477  1.022280  1.022017  1.021749
         2       1.022626  1.022385  1.022161  1.021908  1.021602

[6 rows x 5 columns]

(Although to be honest, I think Andy's way is slicker. I'll leave this here though because the melt-modify-pivot pattern has proved pretty useful for me in the past in harder cases.)


Post a Comment for "Stacking And Shaping Slices Of DataFrame (pandas) Without Looping"