Skip to content Skip to sidebar Skip to footer

Converting Int Arrays To String Arrays In Numpy Without Truncation

Trying to convert int arrays to string arrays in numpy In [66]: a=array([0,33,4444522]) In [67]: a.astype(str) Out[67]: array(['0', '3', '4'], dtype='|S1') Not what I inte

Solution 1:

Again, this can be solved in pure Python:

>>> map(str, [0,33,4444522])
['0', '33', '4444522']

Or if you need to convert back and forth:

>>> a = np.array([0,33,4444522])
>>> np.array(map(str, a))
array(['0', '33', '4444522'], 
      dtype='|S7')

Solution 2:

You can stay in numpy, doing

np.char.mod('%d', a)

This is twice faster than map or list comprehensions for 10 elements, four times faster for 100. This and other string operations are documented here.

Solution 3:

Use arr.astype(str), as int to str conversion is now supported by numpy with the desired outcome:

import numpy as np

a = np.array([0,33,4444522])

res = a.astype(str)

print(res)

array(['0', '33', '4444522'], 
      dtype='<U11')

Solution 4:

You can find the smallest sufficient width like so:

In [3]: max(len(str(x)) for x in [0,33,4444522])
Out[3]: 7

Alternatively, just construct the ndarray from a list of strings:

In [7]: np.array([str(x) for x in [0,33,4444522]])
Out[7]: 
array(['0', '33', '4444522'], 
      dtype='|S7')

or, using map():

In [8]: np.array(map(str, [0,33,4444522]))
Out[8]: 
array(['0', '33', '4444522'], 
      dtype='|S7')

Solution 5:

np.apply_along_axis(lambda y: [str(i) for i in y], 0, x)

Example

>>> import numpy as np

>>> x = np.array([-1]*10+[0]*10+[1]*10)
array([-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,  0,  0,  0,  0,  0,  0,  0,
        0,  0,  0,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1])

>>> np.apply_along_axis(lambda y: [str(i) for i in y], 0, x).tolist()
['-1', '-1', '-1', '-1', '-1', '-1', '-1', '-1', '-1', '-1', '0', '0',
 '0', '0', '0', '0', '0', '0', '0', '0', '1', '1', '1', '1', '1', '1',
 '1', '1', '1', '1']

Post a Comment for "Converting Int Arrays To String Arrays In Numpy Without Truncation"