How To Display A Sequence Of Numbers In Column-major Order?
Program description: Find all the prime numbers between 1 and 4,027 and print them in a table which 'reads down', using as few rows as possible, and using as few sheets of paper
Solution 1:
Although I frequently don't answer questions where the original poster hasn't even made an attempt to solve the problem themselves, I decided to make an exception of yours—mostly because I found it an interesting (and surprisingly challenging) problem that required solving a number of somewhat tricky sub-problems.
I also optimized your find_primes()
function slightly by taking advantage of some reatively well-know computational shortcuts for calculating them.
For testing and demo purposes, I made the tables only 15 rows high to force more than one page to be generated as shown in the output at the end.
from itertools import zip_longest
import locale
import math
locale.setlocale(locale.LC_ALL, '') # enable locale-specific formattingdefzip_discard(*iterables, _NULL=object()):
""" Like zip_longest() but doesn't fill out all rows to equal length.
https://stackoverflow.com/questions/38054593/zip-longest-without-fillvalue
"""return [[entry for entry in iterable if entry isnot _NULL]
for iterable in zip_longest(*iterables, fillvalue=_NULL)]
defgrouper(n, seq):
""" Group elements in sequence into groups of "n" items. """for i inrange(0, len(seq), n):
yield seq[i:i+n]
deftabularize(width, height, numbers):
""" Print list of numbers in column-major tabular form given the dimensions
of the table in characters (rows and columns). Will create multiple
tables of required to display all numbers.
"""# Determine number of chars needed to hold longest formatted numeric value
gap = 2# including space between numbers
col_width = len('{:n}'.format(max(numbers))) + gap
# Determine number of columns that will fit within the table's width.
num_cols = width // col_width
chunk_size = num_cols * height # maximum numbers in each tablefor i, chunk inenumerate(grouper(chunk_size, numbers), start=1):
print('---- Page {} ----'.format(i))
num_rows = int(math.ceil(len(chunk) / num_cols)) # rounded up
table = zip_discard(*grouper(num_rows, chunk))
for row in table:
print(''.join(('{:{width}n}'.format(num, width=col_width)
for num in row)))
deffind_primes(n):
""" Create list of prime numbers from 1 to n. """
prime_list = []
for number inrange(1, n+1):
for i inrange(2, int(math.sqrt(number)) + 1):
ifnot number % i: # Evenly divisible?break# Not prime.else:
prime_list.append(number)
return prime_list
primes = find_primes(4027)
tabularize(80, 15, primes)
Output:
---- Page 1 ----
1 47 113 197 281 379 463 571 659 761 863
2 53 127 199 283 383 467 577 661 769 877
3 59 131 211 293 389 479 587 673 773 881
5 61 137 223 307 397 487 593 677 787 883
7 67 139 227 311 401 491 599 683 797 887
11 71 149 229 313 409 499 601 691 809 907
13 73 151 233 317 419 503 607 701 811 911
17 79 157 239 331 421 509 613 709 821 919
19 83 163 241 337 431 521 617 719 823 929
23 89 167 251 347 433 523 619 727 827 937
29 97 173 257 349 439 541 631 733 829 941
31 101 179 263 353 443 547 641 739 839 947
37 103 181 269 359 449 557 643 743 853 953
41 107 191 271 367 457 563 647 751 857 967
43 109 193 277 373 461 569 653 757 859 971
---- Page 2 ----
977 1,069 1,187 1,291 1,427 1,511 1,613 1,733 1,867 1,987 2,087
983 1,087 1,193 1,297 1,429 1,523 1,619 1,741 1,871 1,993 2,089
991 1,091 1,201 1,301 1,433 1,531 1,621 1,747 1,873 1,997 2,099
997 1,093 1,213 1,303 1,439 1,543 1,627 1,753 1,877 1,999 2,111
1,009 1,097 1,217 1,307 1,447 1,549 1,637 1,759 1,879 2,003 2,113
1,013 1,103 1,223 1,319 1,451 1,553 1,657 1,777 1,889 2,011 2,129
1,019 1,109 1,229 1,321 1,453 1,559 1,663 1,783 1,901 2,017 2,131
1,021 1,117 1,231 1,327 1,459 1,567 1,667 1,787 1,907 2,027 2,137
1,031 1,123 1,237 1,361 1,471 1,571 1,669 1,789 1,913 2,029 2,141
1,033 1,129 1,249 1,367 1,481 1,579 1,693 1,801 1,931 2,039 2,143
1,039 1,151 1,259 1,373 1,483 1,583 1,697 1,811 1,933 2,053 2,153
1,049 1,153 1,277 1,381 1,487 1,597 1,699 1,823 1,949 2,063 2,161
1,051 1,163 1,279 1,399 1,489 1,601 1,709 1,831 1,951 2,069 2,179
1,061 1,171 1,283 1,409 1,493 1,607 1,721 1,847 1,973 2,081 2,203
1,063 1,181 1,289 1,423 1,499 1,609 1,723 1,861 1,979 2,083 2,207
---- Page 3 ----
2,213 2,333 2,423 2,557 2,687 2,789 2,903 3,037 3,181 3,307 3,413
2,221 2,339 2,437 2,579 2,689 2,791 2,909 3,041 3,187 3,313 3,433
2,237 2,341 2,441 2,591 2,693 2,797 2,917 3,049 3,191 3,319 3,449
2,239 2,347 2,447 2,593 2,699 2,801 2,927 3,061 3,203 3,323 3,457
2,243 2,351 2,459 2,609 2,707 2,803 2,939 3,067 3,209 3,329 3,461
2,251 2,357 2,467 2,617 2,711 2,819 2,953 3,079 3,217 3,331 3,463
2,267 2,371 2,473 2,621 2,713 2,833 2,957 3,083 3,221 3,343 3,467
2,269 2,377 2,477 2,633 2,719 2,837 2,963 3,089 3,229 3,347 3,469
2,273 2,381 2,503 2,647 2,729 2,843 2,969 3,109 3,251 3,359 3,491
2,281 2,383 2,521 2,657 2,731 2,851 2,971 3,119 3,253 3,361 3,499
2,287 2,389 2,531 2,659 2,741 2,857 2,999 3,121 3,257 3,371 3,511
2,293 2,393 2,539 2,663 2,749 2,861 3,001 3,137 3,259 3,373 3,517
2,297 2,399 2,543 2,671 2,753 2,879 3,011 3,163 3,271 3,389 3,527
2,309 2,411 2,549 2,677 2,767 2,887 3,019 3,167 3,299 3,391 3,529
2,311 2,417 2,551 2,683 2,777 2,897 3,023 3,169 3,301 3,407 3,533
---- Page 4 ----
3,539 3,581 3,623 3,673 3,719 3,769 3,823 3,877 3,919 3,967 4,019
3,541 3,583 3,631 3,677 3,727 3,779 3,833 3,881 3,923 3,989 4,021
3,547 3,593 3,637 3,691 3,733 3,793 3,847 3,889 3,929 4,001 4,027
3,557 3,607 3,643 3,697 3,739 3,797 3,851 3,907 3,931 4,003
3,559 3,613 3,659 3,701 3,761 3,803 3,853 3,911 3,943 4,007
3,571 3,617 3,671 3,709 3,767 3,821 3,863 3,917 3,947 4,013
Post a Comment for "How To Display A Sequence Of Numbers In Column-major Order?"